Parameterized Complexity of Conflict-Free Graph Coloring
نویسندگان
چکیده
Related DatabasesWeb of Science You must be logged in with an active subscription to view this.Article DataHistorySubmitted: 16 December 2019Accepted: 05 May 2021Published online: 02 September 2021Keywordsconflict-free coloring, kernelization, fixed-parameter tractability, combinatorial boundsAMS Subject Headings68Q25, 05C15Publication DataISSN (print): 0895-4801ISSN (online): 1095-7146Publisher: Society for Industrial and Applied MathematicsCODEN: sjdmec
منابع مشابه
dynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولFine-Grained Parameterized Complexity Analysis of Graph Coloring Problems
The q-Coloring problem asks whether the vertices of a graph can be properly colored with q colors. Lokshtanov et al. [SODA 2011] showed that q-Coloring on graphs with a feedback vertex set of size k cannot be solved in time O∗((q− ε)), for any ε > 0, unless the Strong Exponential-Time Hypothesis (SETH) fails. In this paper we perform a fine-grained analysis of the complexity of q-Coloring with ...
متن کاملParameterized Complexity of Synchronization and Road Coloring
A word is called a reset word for a deterministic finite automaton if it maps all states of the automaton to a unique state. Deciding about the existence of a reset word of a given length for a given automaton is known to be a NP-complete problem. We use tools provided by Bodlaender et al. (2007) to prove that such problem, parameterized by number of states, does not admit a polynomial kernel u...
متن کاملConflict-free coloring of graphs
We study the conflict-free chromatic number χCF of graphs from extremal and probabilistic point of view. We resolve a question of Pach and Tardos about the maximum conflict-free chromatic number an n-vertex graph can have. Our construction is randomized. In relation to this we study the evolution of the conflict-free chromatic number of the ErdősRényi random graph G(n, p) and give the asymptoti...
متن کاملConflict-Free Coloring Made Stronger
In FOCS 2002, Even et al. showed that any set of n discs in the plane can be Conflict-Free colored with a total of at most O(log n) colors. That is, it can be colored with O(log n) colors such that for any (covered) point p there is some disc whose color is distinct from all other colors of discs containing p. They also showed that this bound is asymptotically tight. In this paper we prove the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Discrete Mathematics
سال: 2021
ISSN: ['1095-7146', '0895-4801']
DOI: https://doi.org/10.1137/19m1307160